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Summary 

The dual solutions to an equation, which arose previously in mixed convection in a porous medium, occurring 
for the parameter a in the range 0 < a < a 0 are considered. It is shown that the lower branch of solutions 
terminates at a = 0 with an essential singularity. It is also shown that both branches of solutions bifurcate out of 
the single solution at a =  a o with an amplitude proportional to (a  o - a )  1/2. Then, by considering a simple 
time-dependent problem, it is shown that the upper branch of solutions is stable and the lower branch unstable, 
with the change in temporal stability at a = a o being equivalent to the bifurcation at that point. 

1. Introduction 

In a previous paper [1] the author obtained the equation 

F " + F F " = O ,  F(O)=O,  F ' ( O ) = - a ,  F ' ~ I  a s y ~ o ¢ ,  (1) 

(primes denote differentiation with respect to the independent variable y)  in the context 
of mixed-convection boundary-layer flow in a saturated porous medium. It was shown in 
[1] that this equation had just one solution for a ~< 0 and no solutions for a > a 0 
(a  0 = 0.354), while for 0 < a < a 0 there were two solutions, an upper solution F u and a 
lower solution F l with 0 < Ft"(0 ) < F"(O). It is the purpose of this paper to complete the 
discussion of equation (1) by considering the behaviour of the lower solution as a ~ 0 
from above (putting a = 0 gives the Blasius solution for the upper solution) and the 
nature of the two solutions near a = a 0. 

The first case is similar in some respects to the behaviour of the reversed-flow solutions 
of the Falkner-Skan equation as the Falkner-Skan parameter fl-~ 0 from below, as 
treated by Brown and Stewartson [2]. In both cases the solution divides up into two 
regions, a thick inviscid inner region and a much thinner outer shear layer, but the details 
for the two problems are somewhat different. We show that F 1 has an essential singularity 
at a = 0, with, for example, F['(0) being of O ( e x p ( - a E / 2 a ) )  for small a (a 0 is a constant 
determined in the solution). In the second case we find that the perturbation to the 
solution at a = a 0 is of O((a 0 - a ) 1 / 2 ) .  The upper and lower solutions bifurcate out of the 
single solution at a = a 0 with the upper solution arising from the positive sign and the 
lower one from the negative sign obtained on taking a square root. 
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A further question that arises is which of the two solutions F, or F~ will be obtained in 
practice; since Ft"(0 ) and F"(0) are both positive they are each physically acceptable 
solutions for the original heat-transfer problem. To this end we consider the simple 
time-dependent problem 

a3f,.o f 
Oy Ot = Oy3 ± J~y2  (2) 

with boundary conditions (for t > 0) 

O f = _  
f = O ,  Oy a o n y = O ;  a~-~---,1 a s y ~ ,  (3) 

and initial condition 

/ = 0  at t = O  (for y >  0). (4) 

Numerical integrations of equation (2) for a range of a in 0 < a < a 0 show that, in 
each case, the solution f ( y ,  t) approaches Fu(y  ) as t ~ oo. The reason for this becomes 
clear when we consider the behaviour of f ( y ,  t)  for large t. We find that f ( y ,  t)  - F ( y )  
is of O(e -at) with X given by a linear eigenvalue problem (involving F, or Ft). A 
numerical computation of the smallest eigenvalue X1 then shows that Xl is always positive 
for Fu and always negative for F l, so that, for this simple problem at least, F, is the stable 
and F~ the unstable solution, with it being possible to reach only F, from some initial 
configuration. 

2.  T h e  l o w e r  s o l u t i o n  a s  a -~  0 + 

Numerical solutions of equation (1) indicate that, as c~ ~ 0 +, F;'(0) ~ 0 with there being 
a thick inner region in which F~ = - a y  and a much thinner outer region in which 
changes from a small negative value to satisfy the outer boundary condition that F'  ~ 1. 
This suggests expanding F in the inner region as 

F =  - a y  + Aq~l(y ) + A2q~z(y) + . . .  (5) 

where A = A ( a )  is small and whose form will be determined from the matching with the 
outer solution. On substituting (5) into equation (1) and equating like powers, we obtain 
the equation for q~l as 

dp(" -- a ydp~' = O, 

which has the solution satisfying ~ 1 ( 0 ) = ~ ( 0 ) =  0 (the 
relaxed at this stage) 

0: 114 
where A a is a constant. For y >> 1, (7)gives 

(6) 

outer boundary condition is 

(7) 

(8) 
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The equation for ~2 is linear and can be solved by quadratures; the details are lengthy 
and need not be given. All we require here is the behaviour of ~2 for large y and we find 
that 

~b2 8a ~A2e'y2(2y~ 21 ) - - ~ + - - +  . . . .  ( 9 )  
a y  7 

so that 

F-  -ay  + A(a) A1 eay2/2 4--el y2 a2y2 A2(a)A~ 5y5 + "'" (10) 

for y >> 1. 
Expansion (5) is an inner solution and we require a further outer region which matches 

to (10) and at the outer edge of which the outer boundary condition is satisfied. A 
consideration of the terms in equation (1) shows that the only possibility for this outer 
solution is for F to be of O(1) and its thickness also to be of O(1). Then, since expansion 
(10) giving F at the outer edge of the inner region has to match to this outer solution, it 
will break down when F is of O(1), i.e. when y is of O(a-1). This suggests defining the 
independent variable ~ for the outer region by 

y = a ° + ~  " ( 1 1 )  
o/ 

where a 0 is a constant which will be determined by the matching. This leaves equation (1) 
unaltered (though primes now denote differentiation with respect to ~') together with the 
boundary condition 

F '  ~ 1 as ~" ---* oo. (12) 

Now, at y = ao/a, (10) gives 

F -  -ao + A(a) A' ea°~/2" (a) 2A2 e~°/" 
A + . . . .  (13)  

a 2 4a~ 

and so for F to remain of O(1) we must have 

A(a)  = e -a°2/2". (14) 

This fixes A(a) and with this form for A, using (11), we obtain the inner condition for the 
outer region that 

F - ( - a o  +A]ea°~- a2 4a 0 A!  e2a°¢ + "'" 

+o( 
- -  2 a 0 a02 + "'" 

(15) 

as ~-* - ~ .  
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(15) suggests an expansion for F in the outer  region as 

F =  F o + a F  1 + . . .  (16) 

where F 0 satisfies equat ion (1) together with the boundary  condit ion (12) and 

A 1 A 2 
F o _ a o + ~ 2 e , ~ o ~ _  I e 2 a o ¢ + . . .  (17) 

a o 4ag 

as ~ ~ - oo. This p rob lem has already been considered by C h a p m a n  [3] and its numerical  
solution determines a 0 as a o =0.8758.  Fur ther  we can check that  the asymptot ic  
expansion (17) for F o agrees with the asympto t ic  expansion derived f rom the equat ion for 
F 0 as ~ ~ - o ¢ ,  and by  compar ing  the numerical  solution with (17) we can est imate a 
value for A 1 as A 1 = 1.24. One point  to note  about  this solution is that  it is not unique, 
being unal tered by  an O(1) shift in origin in ~, say by  a 1. This reflects the fact that the 
outer  region should be centred on y = ( a o / a )  + a 1 + . . . .  not  on y = a o / a  exactly. 

The  equat ion for the term of O ( a )  is 

Fa" + Fo (' + F, Fg=O (18) 

with bounda ry  condit ions 

F ( - o O  as ~'-o o0, 

A1 [ ~.2 2~" 3 
F1 - -~" + 8a--7 ea°~ 1 - - - -  + - -  2 a o a 2 

+ . . .  a s ~ - - * - ~ .  
(19) 

The  solution of equat ion (18) determines a 1 as a change f rom ~" to ~ = ~ + a~ leaves the 
p rob lem unal tered if we solve equat ion (18) subject to the condit ion that  /7( ~ - 1  as 

~ - oo. This gives a I = 2.704. 
Finally, we have that  as a --* 0 ÷ 

E l " ( 0  ) = A  1 e-a~/2~ + . . . .  (2o) 

To compare  Ft"(0 ) as given by  (20) with values obta ined  f rom the numerical  solutions of  
equat ion (1) we calculate the quant i ty  q = Fl"(0) exp(a2o/2a) and values of q for a range 

Table  1. Values of F[ '(0) and  q = F[ '(0) exp(a~/2a), with  a 0 = 0.8758, for var ious a 

a Ft"(0) q 

0.16 1.0749. 10 -2  

0.14 6.8338. 10 -3 

0.12 3.9346.10 -3  
0.10 1.9356.10 -3  

0.09 1.2382.10 -3  

0.08 7.2152. 10 -4  
0.07 3.6698. 10 -4  

0.1181 

0.1058 
0.0961 

0.0896 
0.0878 

0.0871 
0.0879 
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of a are given in Table  1. q should approach  a constant  value A 1 as a ---, 0 and it appears  
to be doing so, with A 1 = 0.087, given the difficulty in obtaining accurate  numerical  
solutions for  small values of a when F/ ' (0) is getting extremely small. This value of A 1 
appears  to be at odds with the value of A 1 est imated f rom the solution in the outer  region. 
This discrepancy is explained by  noting that the form for F 0 as ~ ~ - o z  in the outer  
region should really be that  F o - - a  o + ( A ~ / a  2) e a°g + . . . .  so that to make  the compar i -  
son we should replace A1 by  A1 e -a '  = 0.083 and then the agreement  becomes clearer, 
given the difficulty in est imating A1 accurately f rom the numerical  solution. 

3. T h e  so lut ion  as  a ~ % 

Consider  some small per turba t ion  q, to the solution F 0 of  equat ion (1) for a part icular  
value of a. Then ~ will satisfy the equat ion (after linearising) 

e~" + Foe/'  + Fa',/, = 0 (21) 

with boundary  condit ions 

q,(0) = ~ ( 0 )  = 0, q~' ---, 0 as y ~ oz. (22) 

(21) and (22) form a homogeneous  prob lem and will, in general, have only the trivial 
solution q5 = 0. (Since any constant  mult iple of  ~ is also a solution, we can take q/'(0) = 1 
without  loss of  generali ty and then solve equat ion (21) as an initial-value problem.  There 
is then no reason why, that  for a general value of a, q,' should tend to zero). 

However ,  we can regard the obtaining of a non-trivial  solution to equat ion (21) 
( together with equat ion (1)) satisfying (22) as an eigenvalue p rob lem for determining a 0 
(the value of  a which limits the range of the dual solutions). A numerical  integration, 
fixing ~"(0) = 1 and regarding a as a parameter ,  gives a 0 = 0.35411 with a corresponding 
F~'(0) = 0.21785, in agreement  with the previously calculated solutions given in [1]. This is 
the crucial step in determining the behaviour  of  the soluton near  a = a0, for we now take 
a = a 0 - c where c > 0 and is assumed small and expand F as 

F =  F o + c'/2Fa + ~F  2 + . . .  (23) 

where F 0 satisfies equat ion (1) with a = a 0. F 1 satisfies equat ion (21) and boundary  
condit ions (22) which has now a non-trivial solution, namely  F 1 = Kq~ for some constant  
K. F 2 then satisfies the equat ion 

F2'" + F o F  ~' + F[~'F 2 = - K 2 q ,  ep '' (24) 

with bounda ry  condit ions 

F2(0 ) = 0, F~(0) = 1, F~ --, 0 as y ~ oz. (25) 

Equat ion (24) is solved by  construct ing two part icular  integrals, F a and F b, where F~ is 
obta ined  by  integrat ing equat ion (24) with K = 1 and F / (0 )  = 0, F"(0)  = 0, and F b by 
integrat ing equat ion (24) with K--- 0, F~(0) = 1, F;,'(O) = 0. The general solution is then 
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Figure 1. A graph of F"(0) for a close to a 0 as calculated from (27), with values determined from a numerical 
integration of equation (1) shown by o. 

given by F 2 = F h + K 2 F~. (This solution is not unique as we can always add on an 
arbitrary multiple of ~). We can easily show that, as y ~ oo, F[ ~ C i (i = a, b) for any 
general integration of (24), with Ci a constant. Then, as y ~ oo, F~ ~ C b + K 2C,, and to 
satisfy the outer boundary condition we must take K 2= - Q / C a .  The numerical 
integrations give C a = 7.3672, C b = - 2 . 8 2 4 0  and hence K =  +0.6191. From which it 
follows that 

F =  F o _ 0.6191(a o - a ) ' /2O + O ( ( a  o - a ) ) .  (26) 

The positive sign in (26) is the start of the branch of upper solutions F, and the negative 
sign the start of the lower branch F~. In particular we have 

F"(0)  = 0.21785 + 0.6191(a 0 - a)  1/2 + . . . .  (27) 

Figure 1 gives a graph of F"(0) as calculated from (27) and also values obtained by 
solving equation (1) numerically. These are in excellent agreement close to a = a 0, giving 
a satisfactory confirmation of the above theory. 

4. Time-dependent problem 

We now consider the solution of equation (2) subject to boundary conditions (3) and 
initial conditions (4). This problem is similar to one treated previously by Ingham, 
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Figure 2. Graphs of (()2f/Oy2)y= 0 against t calculated from the numerical integration of equation (2) for 
a = 0.1, 0.2, 0.3 and 0.35. 

Merkin and Pop [4] (in fact the equation is the same though the boundary  conditions are 
different) and was solved numerically in the same way as described in [4]. It is not  
necessary to repeat all the details of the numerical scheme here, noting only that a 
t ransformed version of the equation, with f =  tl/2h01, t), ~ = y / t  1/2, was used to start 
the integration, the change to equation (2) being made at t = 1. Values of (O2f/OyZ)y= o 
thus obtained for a = 0.1, 0.2, 0.3 and 0.35 are shown in Figure 2. In each case we can see 
that (O2f/OyZ)y= o approaches the value of F"(0)  corresponding to that particular value 
of  a as t ~ oc. Other  values a in 0 < a < a0, as well as different initial conditions, were 
also tried and the same conclusion was reached in each case. 

To see why this is the case, consider the behaviour of f (y ,  t) as t ~ oc for a in 
0 < a < a 0. To do this, put  f (y ,  t)= Fo(y ) + G(y, t) where F 0 is the corresponding 
solution of  equation (1) and where, for t >> 1, G is small and satisfies the (linearised) 
equation 

°3a ° 2--q-a °2a (28) 
Oy3 + Fo ~y2 + GFd' = Oy Ot" 

F r o m  which it follows, by a separation-of-variables argument,  that G =  e-a'g(y), for 
some constant  )t, with g satisfying the equation 

g,, ,  + F o g , , + F d , g + X g , = O  ' (29) 

g ( O ) = O ,  g ' ( O ) = O ,  g ' ~ O  a s y ~ ,  (30) 
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(the form for G above may be multiplied by some term algebraic in t but this will not 
affect equation (29), not alter the conclusions on the stability of F 0 deduced from the sign 
of X). 

For y >> 1, F 0 - y  + 80 + exponentially small terms, so that equation (29) becomes, 
approximately, 

g" +yg" +xg' =0 (31) 

where ~ = y  + 80. Equation (31) can be solved in terms of confluent hypergeometric 
functions, [5], from which we have that 

g '  - D~-X + E~ x-1 e-y2/2. (32) 

We require solutions with exponential decay, for we expect the algebraic decay terms to 
lead to difficulties in the higher-order terms [6] i.e. we have to find that non-trivial 
solution of equation (29) subject to boundary condition (30) which has D = 0. This has to 
be done numerically and we have computed the least eigenvalue X 1 for a range of a in 
0 < a < a 0 for both upper and lower solutions. These values are shown in Table 2. We 
can see that X~ > 0 for the upper solutions and ~ l  < 0 for the lower solutions so that the 
upper branch of solutions is stable and the lower branch unstable and hence these are not 
physically realisable from some initial configuration. To confirm this, equation (2) was 
solved using Fl(y ) as init ialdata.  Though this is an exact solution of (2), the small errors 
introduced by the numerical scheme were sufficient to move this solution away from F l 
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Figure 3. A graph of (1)2f//Oy2)y_o against t for a = 0.3 found by solving equation (2) numerically starting with 
F~(y) as initial data. 
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a Upper Lower 
solution solution 

0.0 0.8096 
0.1 0.6508 - 0.0917 
0.2 0.4715 -0.1413 
0.3 0.2470 -0.1332 
0.32 0.1879 -0.1164 
0.34 0.1134 - 0.0839 
0.35 0.0577 - 0.0492 

and  onto  F u. The results of this integrat ion (for ct = 0.3) are shown in Figure 3. Also, as 

increases, the value of )~1 decreases so that the rate of approach to the steady state 

becomes slower, as is confirmed by the plots of (02f/Oy2)y=O shown in Figure 2. 

: Equat ion  (21) for determining a0, the value of a from which the two branches of J 

solut ions bifurcate, is jus t  equat ion (29) with )~ = 0. This latter equat ion was used to find 

)~ and hence to determine the temporal  stability of each of the two branches.  So that the 
change in stabili ty at a = ct 0 and  the bifurcat ion at this point  can be regarded as 

alternative ways of looking at the same effect, and since this latter is dependent  only on  

the steady-state equat ion (1) we expect the conclusion that the upper  branch of solutions 

is stable and  the lower branch unstable  to hold for a general t ime-dependent  problem for 

which these solutions are possible steady states. 
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